### Glossary Index

###### 2

- 2D Bar/Column Plots
- 2D Box Plots
- 2D Box Plots - Box Whiskers
- 2D Box Plots - Boxes
- 2D Box Plots - Columns
- 2D Box Plots - Error Bars
- 2D Box Plots - Whiskers
- 2D Categorized Detrended Probability Plots
- 2D Categorized Half-Norm. Probability Plots
- 2D Categorized Normal Probability Plots
- 2D Detrended Probability Plots
- 2D Histograms
- 2D Histograms - Hanging Bars
- 2D Histograms - Double-Y
- 2D Line Plots
- 2D Line Plots - Aggregated
- 2D Line Plots - Double-Y
- 2D Line Plots - Multiple
- 2D Line Plots - Regular
- 2D Line Plots - XY Trace
- 2D Range Plots - Error Bars
- 2D Matrix Plots
- 2D Matrix Plots - Columns
- 2D Matrix Plots - Lines
- 2D Matrix Plots - Scatterplot
- 2D Normal Probability Plots
- 2D Probability-Probability Plots
- 2D Probability-Probability Plots-Categorized
- 2D Quantile-Quantile Plots
- 2D Quantile-Quantile Plots - Categorized
- 2D Scatterplot
- 2D Scatterplot - Categorized Ternary Graph
- 2D Scatterplot - Double-Y
- 2D Scatterplot - Frequency
- 2D Scatterplot - Multiple
- 2D Scatterplot - Regular
- 2D Scatterplot - Voronoi
- 2D Sequential/Stacked Plots
- 2D Sequential/Stacked Plots - Area
- 2D Sequential/Stacked Plots - Column
- 2D Sequential/Stacked Plots - Lines
- 2D Sequential/Stacked Plots - Mixed Line
- 2D Sequential/Stacked Plots - Mixed Step
- 2D Sequential/Stacked Plots - Step
- 2D Sequential/Stacked Plots - Step Area
- 2D Ternary Plots - Scatterplot

###### 3

- 3D Bivariate Histogram
- 3D Box Plots
- 3D Box Plots - Border-style Ranges
- 3D Box Plots - Double Ribbon Ranges
- 3D Box Plots - Error Bars
- 3D Box Plots - Flying Blocks
- 3D Box Plots - Flying Boxes
- 3D Box Plots - Points
- 3D Categorized Plots - Contour Plot
- 3D Categorized Plots - Deviation Plot
- 3D Categorized Plots - Scatterplot
- 3D Categorized Plots - Space Plot
- 3D Categorized Plots - Spectral Plot
- 3D Categorized Plots - Surface Plot
- 3D Deviation Plots
- 3D Range Plot - Error Bars
- 3D Raw Data Plots - Contour/Discrete
- 3D Scatterplots
- 3D Scatterplots - Ternary Graph
- 3D Space Plots
- 3D Ternary Plots
- 3D Ternary Plots - Categorized Scatterplot
- 3D Ternary Plots - Categorized Space
- 3D Ternary Plots - Categorized Surface
- 3D Ternary Plots - Categorized Trace
- 3D Ternary Plots - Contour/Areas
- 3D Ternary Plots - Contour/Lines
- 3D Ternary Plots - Deviation
- 3D Ternary Plots - Space
- 3D Trace Plots

###### A

- Aberration, Minimum
- Abrupt Permanent Impact
- Abrupt Temporary Impact
- Accept-Support Testing
- Accept Threshold
- Activation Function (in Neural Networks)
- Additive Models
- Additive Season, Damped Trend
- Additive Season, Exponential Trend
- Additive Season, Linear Trend
- Additive Season, No Trend
- Adjusted means
- Aggregation
- AID
- Akaike Information Criterion (AIC)
- Algorithm
- Alpha
- Anderson-Darling Test
- ANOVA
- Append a Network
- Append Cases and/or Variables
- Application Programming Interface (API)
- Arrow
- Assignable Causes and Actions
- Association Rules
- Asymmetrical Distribution
- AT&T Runs Rules
- Attribute (attribute variable)
- Augmented Product Moment Matrix
- Autoassociative Network
- Automatic Network Designer

###### B

- B Coefficients
- Back Propagation
- Bagging (Voting, Averaging)
- Balanced ANOVA Design
- Banner Tables
- Bar/Column Plots, 2D
- Bar Dev Plot
- Bar Left Y Plot
- Bar Right Y Plot
- Bar Top Plot
- Bar X Plot
- Bartlett Window
- Basis Functions
- Batch algorithms in
*STATISTICA Neural Net* - Bayesian Information Criterion (BIC)
- Bayesian Networks
- Bayesian Statistics
- Bernoulli Distribution
- Best Network Retention
- Best Subset Regression
- Beta Coefficients
- Beta Distribution
- Bimodal Distribution
- Binomial Distribution
- Bivariate Normal Distribution
- Blocking
- Bonferroni Adjustment
- Bonferroni Test
- Boosting
- Boundary Case
- Box Plot/Medians (Block Stats Graphs)
- Box Plot/Means (Block Stats Graphs)
- Box Plots, 2D
- Box Plots, 2D - Box Whiskers
- Box Plots, 2D - Boxes
- Box Plots, 2D - Whiskers
- Box Plots, 3D
- Box Plots, 3D - Border-Style Ranges
- Box Plots, 3D - Double Ribbon Ranges
- Box Plots, 3D - Error Bars
- Box Plots, 3D - Flying Blocks
- Box Plots, 3D - Flying Boxes
- Box Plots, 3D - Points
- Box-Ljung Q Statistic
- Breakdowns
- Breaking Down (Categorizing)
- Brown-Forsythe Homogeneity of Variances
- Brushing
- Burt Table

###### C

- Canonical Correlation
- Cartesian Coordinates
- Casewise Missing Data Deletion
- Categorical Dependent Variable
- Categorical Predictor
- Categorized Graphs
- Categorized Plots, 2D-Detrended Prob. Plots
- Categorized Plots, 2D-Half-Normal Prob. Plots
- Categorized Plots, 2D - Normal Prob. Plots
- Categorized Plots, 2D - Prob.-Prob. Plots
- Categorized Plots, 2D - Quantile Plots
- Categorized Plots, 3D - Contour Plot
- Categorized Plots, 3D - Deviation Plot
- Categorized Plots, 3D - Scatterplot
- Categorized Plots, 3D - Space Plot
- Categorized Plots, 3D - Spectral Plot
- Categorized Plots, 3D - Surface Plot
- Categorized 3D Scatterplot (Ternary graph)
- Categorized Contour/Areas (Ternary graph)
- Categorized Contour/Lines (Ternary graph)
- Categorizing
- Cauchy Distribution
- Cause-and-Effect Diagram
- Censoring (Censored Observations)
- Censoring, Left
- Censoring, Multiple
- Censoring, Right
- Censoring, Single
- Censoring, Type I
- Censoring, Type II
- CHAID
- Characteristic Life
- Chernoff Faces (Icon Plots)
*Chi*-square Distribution- Circumplex
- City-Block (Manhattan) Distance
- Classification
- Classification (in Neural Networks)
- Classification and Regression Trees
- Classification by Labeled Exemplars (in NN)
- Classification Statistics (in Neural Networks)
- Classification Thresholds (in Neural Networks)
- Classification Trees
- Class Labeling (in Neural Networks)
- Cluster Analysis
- Cluster Diagram (in Neural Networks)
- Cluster Networks (in Neural Networks)
- Coarse Coding
- Codes
- Coding Variable
- Coefficient of Determination
- Coefficient of Variation
- Column Sequential/Stacked Plot
- Columns (Box Plot)
- Columns (Icon Plot)
- Common Causes
- Communality
- Complex Numbers
- Conditional Probability
- Conditioning (Categorizing)
- Confidence Interval
- Confidence Interval for the Mean
- Confidence Interval vs. Prediction Interval
- Confidence Limits
- Confidence Value (Association Rules)
- Confusion Matrix (in Neural Networks)
- Conjugate Gradient Descent (in Neural Net)
- Continuous Dependent Variable
- Contour/Discrete Raw Data Plot
- Contour Plot
- Control, Quality
- Cook's Distance
- Correlation
- Correlation, Intraclass
- Correlation (Pearson r)
- Correlation Value (Association Rules)
- Correspondence Analysis
- Cox-Snell Gen. Coefficient Determination
- Cpk, Cp, Cr
- CRISP
- Cross Entropy (in Neural Networks)
- Cross Verification (in Neural Networks)
- Cross-Validation
- Crossed Factors
- Crosstabulations
- C-SVM Classification
- Cubic Spline Smoother
- "Curse" of Dimensionality

###### D

- Daniell (or Equal Weight) Window
- Data Mining
- Data Preparation Phase
- Data Reduction
- Data Rotation (in 3D space)
- Data Warehousing
- Decision Trees
- Degrees of Freedom
- Deleted Residual
- Denominator Synthesis
- Dependent t-test
- Dependent vs. Independent Variables
- Deployment
- Derivative-Free Funct. Min. Algorithms
- Design, Experimental
- Design Matrix
- Desirability Profiles
- Detrended Probability Plots
- Deviance
- Deviance Residuals
- Deviation
- Deviation Assign. Algorithms (in Neural Net)
- Deviation Plot (Ternary Graph)
- Deviation Plots, 3D
- DFFITS
- DIEHARD Suite of Tests & Randm. Num. Gen.
- Differencing (in Time Series)
- Dimensionality Reduction
- Discrepancy Function
- Discriminant Function Analysis
- Distribution Function
- DOE
- Document Frequency
- Double-Y Histograms
- Double-Y Line Plots
- Double-Y Scatterplot
- Drill-Down Analysis
- Drilling-down (Categorizing)
- Duncan's test
- Dunnett's test
- DV

###### E

- Effective Hypothesis Decomposition
- Efficient Score Statistic
- Eigenvalues
- Ellipse, Prediction Area and Range
- EM Clustering
- Endogenous Variable
- Ensembles (in Neural Networks)
- Enterprise Resource Planning (ERP)
- Enterprise SPC
- Enterprise-Wide Software Systems
- Entropy
- Epoch in (Neural Networks)
- Eps
- EPSEM Samples
- ERP
- Error Bars (2D Box Plots)
- Error Bars (2D Range Plots)
- Error Bars (3D Box Plots)
- Error Bars (3D Range Plots)
- Error Function (in Neural Networks)
- Estimable Functions
- Euclidean Distance
- Euler's e
- Exogenous Variable
- Experimental Design
- Explained Variance
- Exploratory Data Analysis
- Exponential Distribution
- Exponential Family of Distributions
- Exponential Function
- Exponentially Weighted Moving Avg. Line
- Extrapolation
- Extreme Values (in Box Plots)
- Extreme Value Distribution

###### F

- F Distribution
- FACT
- Factor Analysis
- Fast Analysis Shared Multidimensional Info. FASMI
- Feature Extraction (vs. Feature Selection)
- Feature Selection
- Feedforward Networks
- Fisher LSD
- Fixed Effects (in ANOVA)
- Free Parameter
- Frequencies, Marginal
- Frequency Scatterplot
- Frequency Tables
- Function Minimization Algorithms

###### G

- g2 Inverse
- Gains Chart
- Gamma Coefficient
- Gamma Distribution
- Gaussian Distribution
- Gauss-Newton Method
- General ANOVA/MANOVA
- General Linear Model
- Generalization (in Neural Networks)
- Generalized Additive Models
- Generalized Inverse
- Generalized Linear Model
- Genetic Algorithm
- Genetic Algorithm Input Selection
- Geometric Distribution
- Geometric Mean
- Gibbs Sampler
- Gini Measure of Node Impurity
- Gompertz Distribution
- Goodness of Fit
- Gradient
- Gradient Descent
- Gradual Permanent Impact
- Group Charts
- Grouping (Categorizing)
- Grouping Variable
- Groupware

###### H

- Half-Normal Probability Plots
- Half-Normal Probability Plots - Categorized
- Hamming Window
- Hanging Bars Histogram
- Harmonic Mean
- Hazard
- Hazard Rate
- Heuristic
- Heywood Case
- Hidden Layers (in Neural Networks)
- High-Low Close
- Histograms, 2D
- Histograms, 2D - Double-Y
- Histograms, 2D - Hanging Bars
- Histograms, 2D - Multiple
- Histograms, 2D - Regular
- Histograms, 3D Bivariate
- Histograms, 3D - Box Plots
- Histograms, 3D - Contour/Discrete
- Histograms, 3D - Contour Plot
- Histograms, 3D - Spikes
- Histograms, 3D - Surface Plot
- Hollander-Proschan Test
- Hooke-Jeeves Pattern Moves
- Hosmer-Lemeshow Test
- HTM
- HTML
- Hyperbolic Tangent (tanh)
- Hyperplane
- Hypersphere

###### I

- Icon Plots
- Icon Plots - Chernoff Faces
- Icon Plots - Columns
- Icon Plots - Lines
- Icon Plots - Pies
- Icon Plots - Polygons
- Icon Plots - Profiles
- Icon Plots - Stars
- Icon Plots - Sun Rays
- Increment vs Non-Increment Learning Algr.
- Independent Events
- Independent t-test
- Independent vs. Dependent Variables
- Industrial Experimental Design
- Inertia
- Inlier
- In-Place Database Processing (IDP)
- Interactions
- Interpolation
- Interval Scale
- Intraclass Correlation Coefficient
- Invariance Const. Scale Factor ICSF
- Invariance Under Change of Scale (ICS)
- Inverse Document Frequency
- Ishikawa Chart
- Isotropic Deviation Assignment
- Item and Reliability Analysis
- IV

###### J

###### K

###### L

- Lack of Fit
- Lambda Prime
- Laplace Distribution
- Latent Semantic Indexing
- Latent Variable
- Layered Compression
- Learned Vector Quantization (in Neural Net)
- Learning Rate (in Neural Networks)
- Least Squares (2D graphs)
- Least Squares (3D graphs)
- Least Squares Estimator
- Least Squares Means
- Left and Right Censoring
- Levenberg-Marquardt Algorithm (in Neural Net)
- Levene's Test for Homogeneity of Variances
- Leverage values
- Life Table
- Life, Characteristic
- Lift Charts
- Likelihood
- Lilliefors test
- Line Plots, 2D
- Line Plots, 2D - Aggregated
- Line Plots, 2D (Case Profiles)
- Line Plots, 2D - Double-Y
- Line Plots, 2D - Multiple
- Line Plots, 2D - Regular
- Line Plots, 2D - XY Trace
- Linear (2D graphs)
- Linear (3D graphs)
- Linear Activation function
- Linear Modeling
- Linear Units
- Lines (Icon Plot)
- Lines (Matrix Plot)
- Lines Sequential/Stacked Plot
- Link Function
- Local Minima
- Locally Weighted (Robust) Regression
- Logarithmic Function
- Logistic Distribution
- Logistic Function
- Logit Regression and Transformation
- Log-Linear Analysis
- Log-Normal Distribution
- Lookahead (in Neural Networks)
- Loss Function
- LOWESS Smoothing

###### M

- Machine Learning
- Mahalanobis Distance
- Mallow's CP
- Manifest Variable
- Mann-Scheuer-Fertig Test
- MANOVA
- Marginal Frequencies
- Markov Chain Monte Carlo (MCMC)
- Mass
- Matching Moments Method
- Matrix Collinearity
- Matrix Ill-Conditioning
- Matrix Inverse
- Matrix Plots
- Matrix Plots - Columns
- Matrix Plots - Lines
- Matrix Plots - Scatterplot
- Matrix Rank
- Matrix Singularity
- Maximum Likelihood Loss Function
- Maximum Likelihood Method
- Maximum Unconfounding
- MD (Missing data)
- Mean
- Mean/S.D. Algorithm (in Neural Networks)
- Mean, Geometric
- Mean, Harmonic
- Mean Substitution of Missing Data
- Means, Adjusted
- Means, Unweighted
- Median
- Meta-Learning
- Method of Matching Moments
- Minimax
- Minimum Aberration
- Mining, Data
- Missing values
- Mixed Line Sequential/Stacked Plot
- Mixed Step Sequential/Stacked Plot
- Mode
- Model Profiles (in Neural Networks)
- Models for Data Mining
- Monte Carlo
- Multi-Pattern Bar
- Multicollinearity
- Multidimensional Scaling
- Multilayer Perceptrons
- Multimodal Distribution
- Multinomial Distribution
- Multinomial Logit and Probit Regression
- Multiple Axes in Graphs
- Multiple Censoring
- Multiple Dichotomies
- Multiple Histogram
- Multiple Line Plots
- Multiple Scatterplot
- Multiple R
- Multiple Regression
- Multiple Response Variables
- Multiple-Response Tables
- Multiple Stream Group Charts
- Multiplicative Season, Damped Trend
- Multiplicative Season, Exponential Trend
- Multiplicative Season, Linear Trend
- Multiplicative Season, No Trend
- Multivar. Adapt. Regres. Splines MARSplines
- Multi-way Tables

###### N

- Nagelkerke Gen. Coefficient Determination
- Naive Bayes
- Neat Scaling of Intervals
- Negative Correlation
- Negative Exponential (2D graphs)
- Negative Exponential (3D graphs)
- Neighborhood (in Neural Networks)
- Nested Factors
- Nested Sequence of Models
- Neural Networks
- Neuron
- Newman-Keuls Test
- N-in-One Encoding
- Noise Addition (in Neural Networks)
- Nominal Scale
- Nominal Variables
- Nonlinear Estimation
- Nonparametrics
- Non-Outlier Range
- Nonseasonal, Damped Trend
- Nonseasonal, Exponential Trend
- Nonseasonal, Linear Trend
- Nonseasonal, No Trend
- Normal Distribution
- Normal Distribution, Bivariate
- Normal Fit
- Normality Tests
- Normalization
- Normal Probability Plots
- Normal Probability Plots (Computation Note)
- n Point Moving Average Line

###### O

- ODBC
- Odds Ratio
- OLE DB
- On-Line Analytic Processing (OLAP)
- One-Off (in Neural Networks)
- One-of-N Encoding (in Neural Networks)
- One-Sample t-Test
- One-Sided Ranges Error Bars Range Plots
- One-Way Tables
- Operating Characteristic Curves
- Ordinal Multinomial Distribution
- Ordinal Scale
- Outer Arrays
- Outliers
- Outliers (in Box Plots)
- Overdispersion
- Overfitting
- Overlearning (in Neural Networks)
- Overparameterized Model

###### P

- Pairwise Del. Missing Data vs Mean Subst.
- Pairwise MD Deletion
- Parametric Curve
- Pareto Chart Analysis
- Pareto Distribution
- Part Correlation
- Partial Correlation
- Partial Least Squares Regression
- Partial Residuals
- Parzen Window
- Pearson Correlation
- Pearson Curves
- Pearson Residuals
- Penalty Functions
- Percentiles
- Perceptrons (in Neural Networks)
- Pie Chart
- Pie Chart - Counts
- Pie Chart - Multi-Pattern Bar
- Pie Chart - Values
- Pies (Icon Plots)
- PMML (Predictive Model Markup Language)
- PNG Files
- Poisson Distribution
- Polar Coordinates
- Polygons (Icon Plots)
- Polynomial
- Population Stability Report
- Portable Network Graphics Files
- Positive Correlation
- Post hoc Comparisons
- Post Synaptic Potential (PSP) Function
- Posterior Probability
- Power (Statistical)
- Power Goal
- Ppk, Pp, Pr
- Prediction Interval Ellipse
- Prediction Profiles
- Predictive Data Mining
- Predictive Mapping
- Predictive Model Markup Language (PMML)
- Predictors
- PRESS Statistic
- Principal Components Analysis
- Prior Probabilities
- Probability
- Probability Plots - Detrended
- Probability Plots - Normal
- Probability Plots - Half-Normal
- Probability-Probability Plots
- Probability-Probability Plots - Categorized
- Probability Sampling
- Probit Regression and Transformation
- PROCEED
- Process Analysis
- Process Capability Indices
- Process Performance Indices
- Profiles, Desirability
- Profiles, Prediction
- Profiles (Icon Plots)
- Pruning (in Classification Trees)
- Pseudo-Components
- Pseudo-Inverse Algorithm
- Pseudo-Inverse-Singular Val. Decomp. NN
- PSP (Post Synaptic Potential) Function
- Pure Error
- p-Value (Statistical Significance)

###### Q

###### R

- R Programming Language
- Radial Basis Functions
- Radial Sampling (in Neural Networks)
- Random Effects (in Mixed Model ANOVA)
- Random Forests
- Random Num. from Arbitrary Distributions
- Random Numbers (Uniform)
- Random Sub-Sampling in Data Mining
- Range Ellipse
- Range Plots - Boxes
- Range Plots - Columns
- Range Plots - Whiskers
- Rank
- Rank Correlation
- Ratio Scale
- Raw Data, 3D Scatterplot
- Raw Data Plots, 3D - Contour/Discrete
- Raw Data Plots, 3D - Spikes
- Raw Data Plots, 3D - Surface Plot
- Rayleigh Distribution
- Receiver Oper. Characteristic Curve
- Receiver Oper. Characteristic (in Neural Net)
- Rectangular Distribution
- Regression
- Regression (in Neural Networks)
- Regression, Multiple
- Regression Summary Statistics (in Neural Net)
- Regular Histogram
- Regular Line Plots
- Regular Scatterplot
- Regularization (in Neural Networks)
- Reject Inference
- Reject Threshold
- Relative Function Change Criterion
- Reliability
- Reliability and Item Analysis
- Representative Sample
- Resampling (in Neural Networks)
- Residual
- Resolution
- Response Surface
- Right Censoring
- RMS (Root Mean Squared) Error
- Robust Locally Weighted Regression
- ROC Curve
- ROC Curve (in Neural Networks)
- Root Cause Analysis
- Root Mean Square Stand. Effect RMSSE
- Rosenbrock Pattern Search
- Rotating Coordinates, Method of
- r (Pearson Correlation Coefficient)
- Runs Tests (in Quality Control)

###### S

- Sampling Fraction
- Scalable Software Systems
- Scaling
- Scatterplot, 2D
- Scatterplot, 2D-Categorized Ternary Graph
- Scatterplot, 2D - Double-Y
- Scatterplot, 2D - Frequency
- Scatterplot, 2D - Multiple
- Scatterplot, 2D - Regular
- Scatterplot, 2D - Voronoi
- Scatterplot, 3D
- Scatterplot, 3D - Raw Data
- Scatterplot, 3D - Ternary Graph
- Scatterplot Smoothers
- Scheffe's Test
- Score Statistic
- Scree Plot, Scree Test
- S.D. Ratio
- Semi-Partial Correlation
- SEMMA
- Sensitivity Analysis (in Neural Networks)
- Sequential Contour Plot, 3D
- Sequential/Stacked Plots, 2D
- Sequential/Stacked Plots, 2D - Area
- Sequential/Stacked Plots, 2D - Column
- Sequential/Stacked Plots, 2D - Lines
- Sequential/Stacked Plots, 2D - Mixed Line
- Sequential/Stacked Plots, 2D - Mixed Step
- Sequential/Stacked Plots, 2D - Step
- Sequential/Stacked Plots, 2D - Step Area
- Sequential Surface Plot, 3D
- Sets of Samples in Quality Control Charts
- Shapiro-Wilks' W test
- Shewhart Control Charts
- Short Run Control Charts
- Shuffle, Back Propagation (in Neural Net)
- Shuffle Data (in Neural Networks)
- Sigma Restricted Model
- Sigmoid Function
- Signal Detection Theory
- Simple Random Sampling (SRS)
- Simplex Algorithm
- Single and Multiple Censoring
- Singular Value Decomposition
- Six Sigma (DMAIC)
- Six Sigma Process
- Skewness
- Slicing (Categorizing)
- Smoothing
- SOFMs Self-Organizing Maps Kohonen Net
- Softmax
- Space Plots 3D
- SPC
- Spearman R
- Special Causes
- Spectral Plot
- Spikes (3D graphs)
- Spinning Data (in 3D space)
- Spline (2D graphs)
- Spline (3D graphs)
- Split Selection (for Classification Trees)
- Splitting (Categorizing)
- Spurious Correlations
- SQL
- Square Root of the Signal to Noise Ratio (f)
- Stacked Generalization
- Stacking (Stacked Generalization)
- Standard Deviation
- Standard Error
- Standard Error of the Mean
- Standard Error of the Proportion
- Standardization
- Standardized DFFITS
- Standardized Effect (Es)
- Standard Residual Value
- Stars (Icon Plots)
- Stationary Series (in Time Series)
- STATISTICA Advanced Linear/Nonlinear
- STATISTICA Automated Neural Networks
- STATISTICA Base
- STATISTICA Data Miner
- STATISTICA Data Warehouse
- STATISTICA Document Management System
- STATISTICA Enterprise
- STATISTICA Enterprise/QC
- STATISTICA Enterprise Server
- STATISTICA Enterprise SPC
- STATISTICA Monitoring and Alerting Server
- STATISTICA MultiStream
- STATISTICA Multivariate Stat. Process Ctrl
- STATISTICA PI Connector
- STATISTICA PowerSolutions
- STATISTICA Process Optimization
- STATISTICA Quality Control Charts
- STATISTICA Sequence Assoc. Link Analysis
- STATISTICA Text Miner
- STATISTICA Variance Estimation Precision
- Statistical Power
- Statistical Process Control (SPC)
- Statistical Significance (p-value)
- Steepest Descent Iterations
- Stemming
- Steps
- Stepwise Regression
- Stiffness Parameter (in Fitting Options)
- Stopping Conditions
- Stopping Conditions (in Neural Networks)
- Stopping Rule (in Classification Trees)
- Stratified Random Sampling
- Stub and Banner Tables
- Studentized Deleted Residuals
- Studentized Residuals
- Student's t Distribution
- Sum-Squared Error Function
- Sums of Squares (Type I, II, III (IV, V, VI))
- Sun Rays (Icon Plots)
- Supervised Learning (in Neural Networks)
- Support Value (Association Rules)
- Support Vector
- Support Vector Machine (SVM)
- Suppressor Variable
- Surface Plot (from Raw Data)
- Survival Analysis
- Survivorship Function
- Sweeping
- Symmetrical Distribution
- Symmetric Matrix
- Synaptic Functions (in Neural Networks)

###### T

- Tables
- Tapering
- t Distribution (Student's)
- Tau, Kendall
- Ternary Plots, 2D - Scatterplot
- Ternary Plots, 3D
- Ternary Plots, 3D - Categorized Scatterplot
- Ternary Plots, 3D - Categorized Space
- Ternary Plots, 3D - Categorized Surface
- Ternary Plots, 3D - Categorized Trace
- Ternary Plots, 3D - Contour/Areas
- Ternary Plots, 3D - Contour/Lines
- Ternary Plots, 3D - Deviation
- Ternary Plots, 3D - Space
- Text Mining
- THAID
- Threshold
- Time Series
- Time Series (in Neural Networks)
- Time-Dependent Covariates
- Tolerance (in Multiple Regression)
- Topological Map
- Trace Plots, 3D
- Trace Plot, Categorized (Ternary Graph)
- Training/Test Error/Classification Accuracy
- Transformation (Probit Regression)
- Trellis Graphs
- Trimmed Means
- t-Test (independent & dependent samples)
- Tukey HSD
- Tukey Window
- Two-State (in Neural Networks)
- Type I, II, III (IV, V, VI) Sums of Squares
- Type I Censoring
- Type II Censoring
- Type I Error Rate

###### U

###### V

###### W

###### X

###### Y

###### Z

Hadoop. A distributed file system for storing and managing data repositories in the multiple terabytes to low petabyte range.

Half-Normal Probability Plots. This type of graph is used to evaluate the normality of the distribution of a variable, that is, whether and to what extent the distribution of the variable follows the normal distribution. The selected variable will be plotted in a scatterplot against the values "expected from the normal distribution." The half-normal probability plot is constructed in the same way as the standard normal probability plot, except that only the positive half of the normal curve is considered. Consequently, only positive normal values will be plotted on the *Y*-axis.

Half-Normal Probability Plots - Categorized. This type of graph is used to evaluate the normality of the distribution of a variable, that is, whether and to what extent the distribution of the variable follows the normal distribution. The selected variable will be plotted in a scatterplot against the values "expected from the normal distribution." The categorized half-normal probability plot is constructed in the same way as the standard normal probability plot, except that only the positive half of the normal curve is considered. Consequently, only positive normal values will be plotted on the *Y*-axis. This plot is used when you want to ignore the sign of the residual, that is, when you are mostly interested in the distribution of absolute residuals, regardless of the sign.

Hamming Window. In Time Series, the Hamming window is a weighted moving average transformation used to smooth the periodogram values. In the Hamming (named after R. W. Hamming) window or Tukey- Hamming window (Blackman and Tukey, 1958), for each frequency, the weights for the weighted moving average of the periodogram values are computed as:

w_{j} = 0.54 + 0.46*cosine(*j/p) (for j=0 to p)

w_{-j} = w_{j} (for j 0)

where *p = (m-1)/2*

This weight function will assign the greatest weight to the observation being smoothed in the center of the window, and increasingly smaller weights to values that are further away from the center.

See also, Basic Notations and Principles.

Hanging Bars Histogram. The hanging bars histogram offers a "visual test of normality" of the distribution that helps identify the areas of the distribution where the discrepancies (between the observed and expected normal frequencies) occur. While the standard way of presenting the normal distribution fitted to an observed distribution is to overlay the best-fitting normal curve over a histogram, the hanging bars histogram does just the opposite: it suspends the bars representing the observed frequencies for consecutive ranges of values from the best-fitting normal curve.

If the investigated distribution can be well approximated by the normal curve, then the bottoms of all bars should form a straight, horizontal line.

Harmonic Mean. The *Harmonic Mean* is a "summary" statistic used in analyses of frequency data; it is computed as:

H = n * 1/(1/x_{i})

where

*n* is the sample size.

Hazard. It is often meaningful to consider the function that describes the probability of failure during a very small time increment (assuming that no failures have occurred prior to that time). This function is called the hazard function (or, sometimes, also conditional failure, intensity, or force of mortality function), and is generally defined as:

h(t) = f(t)/(1-F(t))

where *h(t)* stands for the hazard function (of time *t*), and *f(t)* and *F(t)* are the probability density and cumulative distribution functions, respectively.

For additional information, see Survival Analysis or the Weibull and Reliability/Failure Time Analysis section in Process Analysis.

Hazard Rate. In *Survival Analysis* the hazard rate is defined as the probability per time unit that a case that has survived to the beginning of the respective interval will fail in that interval. Specifically, it is computed as the number of failures per time units in the respective interval, divided by the average number of surviving cases at the mid-point of the interval.

Heuristic. As opposed to an algorithm (which contains a fully defined set of steps that will produce a specific outcome), *heuristics* are general recommendations or guides based on statistical evidence (e.g., *"quit smoking to prolong your life,"* *"males with college education are more likely to respond positively to this advertisement than…"*) or theoretical reasoning (e.g., *"the mechanism of the vitamin X synthesis as we understand it, implies that eating Y will reduce the deficit of X"*). For more information about the concept of *heuristic*, see Kahneman, Slovic, & Tversky, 1982.

See also, Data Mining, Neural Networks, algorithm.

Heywood Case. A *Heywood case* in common factor analysis occurs when the minimum of the discrepancy function is obtained with one or more *negative values* as estimates for the variance of the unique variables. Such values are of course impossible. Heywood cases occur frequently when too many factors are extracted, or the sample size is too small.

Hidden Layers (in Neural Networks). All layers of a neural network except the input and output layers. *Hidden layers* provide the network's non-linear modeling capabilities.

High-Low Close. In this type of box or range plot, the "serifs" on the whiskers are not symmetrical but point to the left of the bar, representing the traditional "stock price graph" style. Note that you can change the whisker style (i.e., *Hi/Lo Left, Hi/Lo Right,* or *Whiskers*), for example:

Histograms, 2D. 2D histograms (the term was first used by Pearson, 1895) present a graphical representation (see below) of the frequency distribution of the selected variable(s) in which the columns are drawn over the class intervals and the heights of the columns are proportional to the class frequencies.

Histograms, 3D Bivariate. Three-dimensional histograms are used to visualize crosstabulations of values in two variables. They can be considered to be a conjunction of two simple (i.e., univariate) histograms, combined such that the frequencies of co-occurrences of values on the two analyzed variables can be examined. In a most common format of this graph, a 3D bar is drawn for each "cell" of the crosstabulation table and the height of the bar represents the frequency of values for the respective cell of the table. Different methods of categorization can be used for each of the two variables for which the bivariate distribution is visualized (see below).

For information on smoothing 3D Bivariate Histograms, see Smoothing Bivariate Distributions.

Histograms, 3D - Box Plots. This type of bivariate histogram represents the frequencies as a series of 3D bars ("rectangular boxes"). This is the default representation of 3D histograms. The "height" of each bar on the Z- axis corresponds to the frequency of the respective combination of levels for the two variables.

Histograms, 3D - Contour/Discrete. This contour plot represents a discrete projection of the 3D (smoothed) histogram.

Histograms, 3D - Contour Plot. This contour plot presents a projection of the spline-smoothed surface fit to the frequency data (see 3D Sequential Surface Plot. Successive values of each series are plotted along the *X*-axis, with each successive series represented along the *Y*-axis.

Histograms, 3D - Spikes. In this type of bivariate histogram, the frequencies are represented as a series of "spikes" (point symbols with lines descending to the base plane). The "height" of each spike is determined by the frequency for the respective combination of levels of the two variables.

Histograms, 3D - Surface Plot. In this representation of the 3D bivariate histogram, a spline-smoothed surface is fit to the frequency data.

Hollander-Proschan Test. This test compares the theoretical reliability function to the Kaplan-Meier estimate. The actual computations for this test are somewhat complex, and you may refer to Dodson (1994, Chapter 4) for a detailed description of the computational formulas. The *Hollander-Proschan test* is applicable to complete, single-censored, and multiple-censored data sets; however, Dodson (1994) cautions that the test may sometimes indicate a poor fit when the data are heavily single-censored. The Hollander-Proschan *C* statistic can be tested against the normal distribution (z).

The *Hollander-Proschan test* is used in Weibull and Reliability/Failure Time Analysis; see also, Mann-Scheuer-Fertig Test and Anderson-Darling Test.

Hooke-Jeeves Pattern Moves. A Nonlinear Estimation procedure which at each iteration, first defines a pattern of points by moving each parameter one by one, so as to optimize the current loss function. The entire pattern of points is then shifted or moved to a new location; this new location is determined by extrapolating the line from the old base point in the m dimensional parameter space to the new base point. The step sizes in this process are constantly adjusted to "zero in" on the respective optimum. This method is usually quite effective, and should be tried if both the quasi-Newton and Simplex methods fail to produce reasonable estimates.

Hosmer-Lemeshow Test. The Hosmer-Lemeshow is a goodness of fit statistic computed using the 2 x g table of observed and expected frequencies, where g is the number of groups. This statistic is compared to a chi-square distribution with g-2 degrees of freedom.

Where *N _{j}* is the number of observations in the jth group,

*O*is the number of responses in the jth group, and is the average of the predicted probabilities in the jth group.

_{j}HTM. A file name extension used to save HTML documents (see HTML).

HTML. Acronym for HyperText Markup Language. The markup language used for documents on the World Wide Web. HTML uses tags to identify elements of the document, such as text or graphics. HTML 2.0, defined by the Internet Engineering Task Force (IETF), includes features of HTML common to all Web browsers as of 1995 and was the first version of HTML widely used on the World Wide Web. Future HTML development will be carried out by the World Wide Web Consortium (W3C). HTML 3.2, the latest proposed standard, incorporates features widely implemented as of early 1996. Most Web browsers, notably Netscape Navigator and Internet Explorer, recognize HTML tags beyond those included in the present standard.

Hyperbolic Tangent (tanh). A symmetric S-shaped (sigmoid) function, sometimes used as an alternative to logistic functions.

Hyperplane. An *N*-dimensional analogy of a line or plane, which divides an *N+1* dimensional space into two. See, Neural Networks.

Hypersphere. An *N*-dimensional analogy of a circle or sphere. See, Neural Networks.